AACR VIRTUAL SPECIAL CONFERENCE RADIATION SCIENCE AND MEDICINE

March 2-3, 2021

FINDING CURES TOGETHER

for Cancer Research*

Selective Targeting and Imaging of Orthotopic Glioblastoma after a Single Systemic Dose of a Novel Hydroxyl Dendrimer Radionuclide

R. Sharma¹, M. Sun¹, S. Appiani¹, R. Coehlo², P. McConville², S. Alters³, J.L. Cleland^{4*}

- 1. Ashvattha Therapeutics, Baltimore, MD
- 2. Invicro, Boston, MA
- 3. Alters Bioscience, Palo Alto, CA
- 4. Ashvattha Therapeutics, Redwood City, CA
- * Presenting Author: jeff@avttx.com

FINDING CURES TOGETHER*

Jeffrey L Cleland, PhD

I have the following financial relationships to disclose:

Stockholder in: Ashvattha Therapeutics Employee of: Ashvattha Therapeutics

I will not discuss off label use and/or investigational use in my presentation.

Hydroxyl Dendrimers Cross BBB & Target TAMs

Hydroxyl Dendrimer (HD)

- < ¹/₂ size of antibody
- Water-like Surface (novel finding)
- Targets Key Cells, No Ligand Needed
- Crosses BBB in presence of inflammation
- Only taken up by reactive inflammatory cells in diseased tissues (broad range of diseases)
- No uptake in peripheral macrophages or Kupfer cells
- Renal clearance in animals & humans
- >85 published studies, 7 species, >30 animal models

AACR VIRTUAL SPECIAL CONFERENCE: RADIATION SCIENCE AND MEDICINE

Imaging Study Design

- HD Constructs
 - HD4 and HD6 (~4 or 6 nm diameter)
 - DOTA covalently linked to HD via linker arm conjugated to hydroxyl on HD surface
 - ¹¹¹In radiolabeling with >95% radiochemical purity
- Animal Model
 - GL-261-luc orthotopic glioblastoma mouse model
 - Tumor implant followed by monitoring with bioluminescence
 - Single IV dose of HD4-DOTA-¹¹¹In or HD6-DOTA-¹¹¹In at 0.5 mg/mouse or 0.3 mCi/mouse (3 mice per group)
 - Whole body SPECT/CT imaging up to 7 days post-dose
 - Quantitative biodistribution and uptake using VivoQuant 4.0

T½: 2.8 d

Tumors & Biodistribution

AMERICAN American Association for Cancer Research*

- Tumor volumes from bioluminescence
 - HD4 Group: 15, 24, & 43 mm³
 - HD6 Group: 14, 26 & 38 mm³
- Biodistribution
 - Clearance through kidney into bladder/urine

Subject 7: HD6-DOTA-¹¹¹In 24 h

Previous Study (Orthotopic GBM)

AACR VIRTUAL SPECIAL CONFERENCE: RADIATION SCIENCE AND MEDICINE

Selective Brain Tumor Targeting

AMERICAN American Association for Cancer Research*

AACR VIRTUAL SPECIAL CONFERENCE: RADIATION SCIENCE AND MEDICINE

- HD6-DOTA-¹¹¹In is selectively taken up and persists (>7 d) in brain tumors yielding high signal relative to normal brain tissue
- HD4 and HD6 are primarily cleared via kidneys (urinary excretion)
- This study demonstrates the potential to use HD6 to target and image brain tumors and brain metastases
- HD6-DOTA construct optimization ongoing
- HD6-DOTA-⁹⁰Y in orthotopic GBM mouse model and dosimetry studies planned
- HD6-DOTA-¹¹¹In IND in Q4 to assess imaging of patients with brain tumors and brain metastases