

Poster: 4927 - B0132

Targeted Sustained Intracellular Delivery to Choroidal Neovascular Lesions After a Single Systemic Administration as Demonstrated by Imaging

April 30, 2020

Rishi Sharma¹, Justin Prater², M. Grazia Spiga², W. David Culp², Kannan Rangaramanujam^{1,3}, <u>Jeffrey L Cleland¹</u>

1. Ashvattha Therapeutics, Inc., Redwood City, CA United States

2. Powered Research, Inc, Raleigh, NC United States

3. Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD

Disclosures

- Rishi Sharma, PhD, Santiago Appiani and Jeffrey Cleland, PhD are employees of Ashvattha Therapeutics which funded the research
- Justin Prater, M. Grazia Spiga, and David Culp are employees of Powered Research which was contracted by Ashvattha for the animal studies
- Kannan Rangaramanujam, PhD is an employee of Johns Hopkins School of Medicine and a co-founder of Ashvattha Therapeutics

Background – Targeting across Ocular-Blood Barrier

Non-human Primate Optical Nerve Injury Model

IV dose of Fluorescent Dendrimer (D-Cy5)

- Selective update in retinal pigment epithelia (RPE) cells, reactive microglia and reactive macrophage
- Minimal dendrimer in non-injured region of optic nerve or CNS
- Systemic dosing (IV) led to greater uptake in injured region than IVT dosing (rat studies)

Guo et al, 2016 PLoS ONE, 11(4): e0154437

Hydroxyl Dendrimer for Hyper-Targeted Delivery

- Selective targeting to activated cells (cells actively endocytosing) at sites of inflammation
- Proof of concept in 30+ animal models, 6 species including dogs and monkeys
- No off-target toxicity no toxicity of platform at 1000 mg/kg
- Human safety (up to 40 mg/kg) no clinical adverse events
- Flexible dosing oral or injectable
- Wide range of drugs (>65) small molecules, proteins, RNA/DNA
- Tunable functionality multiple linkers and chemistries, different size dendrimers to alter PK/distribution
- Inexpensive to manufacture at large scale (>1 kg) (1 kg GMP lots)

Kannan et al. 2012, Science Transl Med; Sharma et al. 2017, BioEng Trans Med

~40 hydroxyl ends ~5-20 drug molecules per dendrimer

Tunable drug loading Drug conjugates = NCEs

Hydroxyl Dendrimer Constructs

Building Blocks

Hydroxyl dendrimer

Bonds between dendrimer-drug

- Cleavable bond
- Non-cleavable bond

Linker Arm

Fluorescent tag

<u>Constructs</u>

Dendrimer-Isocyanine Green (D-ICG) (non-cleavable)

Dendrimer-tetramethylrhodamine (D-TRITC) (non-cleavable)

In vitro release

- Intracellular conditions: pH 5.5, esterase, 37°C
- Extracellular conditions: PBS, pH 7.4, 37°C

No Significant Release of ICG or TRITC from Dendrimers

Study 1: Timing of D-ICG uptake in CNV model

- Laser induced choroid neovascularization C57BL/6 mouse model (n=5/group)
- Administered IV 100 μL of D-ICG or vehicle control at 1, 3, 7, or 14 days post-laser
- Eyes analyzed by optical coherence tomography (OCT) with ICG imaging at 4 or 24 hr post-dose.
- Flat-mounts of the sclera-choroid/retinal pigment epithelial (RPE) complexes were stained by fluorescently tagged isolectin and IBA-1

Early stage of CNV lesion greater uptake consistent with efficacy studies (24 hr post-laser)

Reactive Macrophage and Microglia Endocytose Dendrimer (24 hr post-laser)

Study 2: Localization and Persistence in CNV lesions

- Laser induced choroid neovascularization C57BL/6 mouse model (n=5/group)
- Administered IV 100 μL of D-ICG and 100 μL of D-TRITC (1 hr after D-ICG) or vehicle control at 24 hr post-laser
 - Mice analyzed and sacrificed at 4, 7, 14, 21, and 28 days post-dose (n=5/group)
- Control group: free ICG (1.23 mg/mL), 100 μL , IV dosed 24 hr post-laser
 - Mice analyzed and sacrificed at 2, 4, 7, and 14 days post-dose (n=5/group)
- Eyes analyzed by optical coherence tomography (OCT) with ICG imaging
- Flat-mounts of the sclera-choroid/RPE complexes were stained by fluorescently tagged IBA-1

Red = Dendrimer

Green = IBA-1

Free ICG Control Group:

Day 24714Free ICG no longer in lesions between 7-14 days

Dendrimer localized in macrophages in CNV lesions

Co-localization

Sustained localization at CNV Lesions

Single IV dose of Dendrimer – ICG (D-ICG)

Mouse laser-induced choroidal neovascularization (CNV) model (dosing 24 hr post-laser)

Potential for once per month systemic (subcutaneous or oral) treatment for retinal diseases with minimal systemic exposure

Summary: Targeted Sustained Localization from Single Systemic Dose

- Hydroxyl dendrimers target CNV lesions from systemic administration and are retained in lesions for >28 days
- Hydroxyl dendrimers co-localize with reactive macrophages in choroids, microglia/macrophages in retina, and RPE cells at the site of inflammation/neovascularization
- Macrophage, microglia, and RPE cells express VEGF receptors (VEGFR) in CNV animal models and patients with age-related macular degeneration¹⁻³
- Conjugation of VEGF receptor tyrosine kinase inhibitors to hydroxyl dendrimers may enable drug targeting to ocular inflammation after systemic administration *(see Presentation Number: 3974)*

Hydroxyl Dendrimers Target and Persist in Cells Expressing VEGFR

- 1. McLeod et al, 2016 Retinal Cell Biology, 57: 5843-5854
- 2. Couturier et al, 2014 Molecular Vision, 20: 908-920
- 3. Liu et al, 2017 Oncotarget, 8: 979-987