October 6, 2021

Development of a novel hydroxyl dendrimer SPECT tracer, ¹¹¹In-D6-B483, for selective imaging of brain tumors

R. Sharma¹, R. Coelho², S. Appiani La Rosa¹, C. Lee², S. Alters³, P. McConville², & <u>J.L. Cleland¹</u>

1. Ashvattha Therapeutics, Inc

2. Invicro, Inc

3. Alters Biosciences

Neuro-Oncology Imaging & Radiotherapy Challenges

- Inability of radiotracers to cross blood brain barrier (BBB)
- Lack of specificity for only tumor tissue compared to normal tissue in brain
- Variable expression of radiotracer target across patients and tumor types
- Inability to image and treat brain metastases at early stage (single met) without false positives
- Radiation fraction in the brain tumor for radiotherapy insufficient to reduce tumor burden

Glioblastoma

Reactive Microglia & Macrophage

Disease Cell-targeted Precision Medicine

Crosses Tissue Barriers and Selective Uptake by Reactive Microglia & Macrophages

Selective: HDT Uptake Only in Reactive Cells

TUMOR ASSOCIATED MACROPHAGES

Glioblastoma Orthotopic Tumor Model In Rat

Selective Uptake By Tumor Associated Microglia and Macrophages

Liaw 2019

HD (in red) crosses blood brain barrier and is taken up by reactive inflammatory cells (TAMs)

Distribution of D6-B483

- Cy5 labelled D6-B483 with either 2-3 or 8-10 DOTA (10 mg/kg) was administered IV to mice.
- Mice (3/timepoint) were sacrificed at 15 min, 4, 24, 48, and 96 h post-dose.
- Amount of Cy5-D6-B483 was measured in kidney and liver after tissue homogenization and extraction.

Liaw 2020; Lesniak 2013

Evaluation of Selective Uptake In Brain and Solid Tumors

- 20 mice implanted with 10⁶ GL-261-luc2 cells by stereotactic intracranial (IC) surgery
- Brain tumor size and location by bioluminescence (BLI) to confirm tumor sizes (MRI to BLI correlations previously established by Invicro)
- 8 mice implanted subcutaneous (SC) with 10⁶ GL-261-luc2 cells;
 Dosed once tumors were between 125 to 350 mm³ (caliper measurements)
- IV dose of ¹¹¹In-D6-B483 (~230 μCi, 45 μg)
- SPECT/CT images: 3-6, 24, 48, 72 and 96 h post-dose

Subcutaneous (SC)

Previous Study Demonstrating Persistence

Localization of D6-B483 in Large Tumors

35

ID/g

%

0

Localization of D6-B483 in Small Tumors

Radiotherapy Plan

- Choice of Radioisotope
 - Long pathlength to kill adjacent tumor cells
 - Long isotope half-life to avoid need for repeat dosing
 - Selected Isotope: ${}^{90}Y 2.7$ day half-life, 4-5 mm pathlength
- D6-B483 Persists in TAMs for up to 1 month
 - Local cellular depot of radiation
 - Minimize systemic exposure (cleared in 48 h)
- Planned Studies
 - Orthotopic GBM mouse model
 - Metastatic melanoma mouse model (¹¹¹In followed by ⁹⁰Y)

Overview of Clinical Strategy for Brain Cancer

Pre-IND for ¹¹¹In-D6-B483 Submitted to FDA – Feedback Expected by Nov 2021

Ability to Detect & Treat Brain Metastases

